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ABSTRACT

A method of improving the bearing—resolving capabilities of a passive array is discussed.
This method is an adaptive beamforming method, having many similarities to the minimam
energy approach. The ovaluation of emergy in eack steered beam is preceded by an
e¢igenvalue—eigenvector anslysis of the empirical correlation matrix. Modification of the
computations according to the eigeavalue structure result in improved resolution of the
bearing of acoustic sources. The increase in resolution is related to the time-bandwidth
product of the computatiom of the correlation matrix. However, this increased resolutionm
is obtained at the expense of array gain.
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Improving the Resolution of Bearing in Passive Sonmar Arrays
by Eigenvalue Analysis

Don H. Johmson
Stuart DeGraaf

Department of Electrical Engineering
Rice University
Houston, Texas 77001

1. Iatroductjom

An array of acoustic sensors is placed in a known spatial pattern to record the
scoustic enviromment. Measurement of the acoustic field by an array offers two basic
improvements over the signal-processing capabilities of a single semsor. The first is the
determination of the bearing of the acoustic source(s). Bearing cannot be obtained with a
single sensor whereas an array offers some bearing resolving capability. This capability
is usually measured by the just-detectable separation of two equi-strength sources for a
given signal-to-noise ratio at ome semsor in the array[6]. The determination of the
bearing of a remote source of acoustic energy remains ome of the fundamental probdlems of
passive sonar systems. The waveforms recorded by each semsor can be acquired with as much
fidelity as desired. In contrast, the size and geometry of the array is usually limited
by physical comsiderations; these limitations restrict the spatial resolution of source
bearing. The second improvement is the increase of signal-to-noise ratio. If the noise
field is uncorrelated at each seasor location with respect to all other locatioms, the
signal~to—no0ise ratio in the array output is increased by a factor equal to the number of
sensors comprising the array. This factor decreases when the noise field is correlated at
the sensor locations. The measure of improvement in the signal-to—-noise ratio is array
gain: the ratio of the signal-to—-moise ratio at the array output to that obtained with a
single sensor.

Adaptive beamforming methods (ABF) are known to have superior bearing resolution
capsbilities when compared to conventional beamformers (in a theoretical sense)([6].
Specifically, the minimum energy method has been analyzed extemsively in this regard.
However, there is no theoretical basis indicating that this method has the best~possible
bearing resolution properties. On the other hand, the array gain provided by this method
is optimum: no other beamforming technique can yield a larger increase in signal-to—noise
ratio. This report is concerned with a new ABF scheme which is similar in many respects
to the minimum energy method. It can demonstrate greatly increased bearing resolution
properties but at the expense of array gain. The scheme is based on an eigenvector—
eigenvalue decomposition of the empirical correlation matrix, which is then trumncated so
as to retain only those terms which best comtribute to increased bearing resolutiomn. This
spproach is similar to those descrided by Schmidt([13] im his MUSIC system, by Owsley(12]
in his modal decomposition approach, and by Bienvenu(2, 3]. Analytic results are
presented here which contrast the bearing resolving properties of these various
eigenvector methods and the minimum energy method.

IX. Ezeliminazies

Let x-(t) denote the outputs taken from an array of sensors haviag a kaown geometry.
Beasforming comsists of computing the quantity
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y(t) = z anx'(t-t.) (1)

where L is the amplitude weighting (shading) applied to the rn‘-sensor output, *n is the
delay applied to the lﬂLunsor output, and M is the number of sensors in the array. The
parameters (a-} and {1:.} of a beam are chosen according to some desired criterion (e.g.,
steering the beam in a particular direction, minimizing sidelobe height, etc.).

Beamforming can also be viewed as a type of multidimemsional spectral analysis(1, 9].
Evaluating the Fourier transform of the beam y(t), we have

~j2nf<x
Y(f) = ae ™ (f). (2)
u-O m m

Therefore, at each temporal frequency f, the Fourier transform of the besm can be writtenm
as the dot product of two vectors

I(f) = A’'X . (3)

where A denotes the steering vector consisting of the elements

*-j2:tf-\:‘Il

and X denotes the vector comprised of the Fourier transforms of the sensor outputs. Here,
A’ denmotes the conmjugate traanspose of A. Assume that we have a linear array of equally-
spaced sensors; in this instance, the delays T vill be of the form T2 * mT. Equation

(2) becomes

L, T) = ? a..‘jz"‘“xnm. (4)

=)

Consequently, Y(f, T) is the Fourier traasform of the sequence 'anx.(f). For s linesr

array, computing s transform slomg the index m is idenmtical to computing the traasform in
space scross the arzray. Y(f, T) is, therefore, the spatial transform of .nxnm evaluated

at the spatial frequemcy k = fT. The result of applying a particular shading L is to
convolve the true (iafianite sperture) spatial spectrum with the Fourier traansform of

L 2=0,..., M1, thereby smearing the true spectrum and limiting the resolution that can

be obtained.

III. Hish-Resolntion Iechnigues

One can obtain a set of weights (or, equivalently, & steering vector) to achieve
better resolution by aedapting them to the particular =noise field aand signsl field
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impinging on the array. In these adaptive beamforming schemes, the steering vector is the
solution to an optimization problem(4, 11]: find the steering vector which minimizes the
energy in the besm subject to the constrsint A’'Z = 1, where Z is the comstraint vector.
The energy contained in a beam can be expressed by the quadratic form A’RA where R denotes
the empirical spatial correlation matrix of the Fourier transforms of the sensor outputs.
The correlation matriz R is ususlly estimated from the sensor outputs by a variatiom of
the Bartlett procedure. The output of each sensor is sectioned and windowed. The Fourier
traasform of each section is eveluated and the vector xi(fo) of Fourier tramsform values

§4 1

at the frequency ‘o across the array for the i section is formed. Assuming that K

sections are available, R is computed according to

D S .
)3 " Lo xi(fo)xi(fo) (5)

Usually K is taken to be the number of statistically independent terms used in the
empirical computation of the correlation matrix R; K is frequently referred to as the
time~bandwidth product.

The solution to this optimization problem is

iz

—. (6)
Z'RZ

Aa

The resulting value of the energy in the beam is
am = xip™, ™

In the so—called high~resolution(5] or gmipimum egergy scheme, the constrsiat vector Z is a
plane~wave direction~of-look vector ¥, each element of which is given by 'n = °32:mk
where k corresponds to s specific spatial frequency. As k = fT and f is known, each value
of k corresponds to a specific per—channel delay. Defining O to the bearing of the source
relative to array-broadside, T = (d/fA)sin €. Conssquently, spatial frequency Xk is
related to dearing O as k = (d/A)sin ©. The constraint A'Y = 1 fixes the gain of the
stosring vector in the direction~of-look ¥ to be unity. Forcing the energy to be minimum
theroby reduces the contributions from plane—~waves arriving from other directions and from
the noise field. The energy ian the beam corresponding to the spatial frequency k is
expressed by

vo=lyy=1
Se(®) = e tint, (8)

The bearing of the target(s) is determined by finding the spatial fregquemcy(s) at which
the quantity in equation (8) achieves maxima. The maximum likelihood spectral estimate is
closely related to the minimum energy estimate, but differs from it in am importaat way.
The maximum likelihood uses the noise—only correlation matrix in its evaluation of the
beam energy.
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S (B) = (1'2;11)’1 (9)

Here ln =« E[(NN'], the theoretical corrslation matrix of the noise componeat of J. Note
specifically that the matrix ln is assumed to be a known quantity and is not computed from

empirical data. The maximum likelihood method yields the optimum array gaia(6, 7]. The
maximum likelihood and minimum energy methods yield the same array gain when the beam is
steered toward the acoustic source(6].

I¥. Impzoving Resolution

From the viewpoint presented here, there is great flexibility im choosing the
constraint vector Z. One wonders if there is a particular choice for the constraint
vector which can maximize the spatial resolution of source bearing. For example, choose a
constraiat vector of the form

Z = X (10)

where C is a matrix to be described. The emergy in the beam when steered toward the
source would then be

s(x) = (werlteml, (11)

Suppose the vector Y corresponded to am actual plane-wave source. If C were a matrix
having the property that this choice of ¥ lay ian the null space of the matrix (CX = 0),
the energy in the beam when steered in this direction would be infinite. If the direction
vector corresponding to the plane—wave source were the only direction vector that lay ia
the null space of C, onme would therefore obtain a marked indication of the bearing of the
source.

While it is theoretically possible to have a perfect indication of source bearing by
this approach, the difficulty lies in finding the matrix C. This matrix must have the
property that direction vectors lying im its aull space correspond only to plane—waves
eminating from actual sources. Assuming that the bearing of the sources is not known,
construction of the matrix C would seem impossible. However, one can construct a matrix
having a null space consisting of vectors which closely resemble directiomn vectors of
source plane-waves. The key idea of this oprocedure is to analyze carefully the
eigenvectors and eigenvalues of the correlation matrix.

IV.A. Ihe Eigeavector Method

The eigenvectors of the matrix R are defined by the property

ui = Lixi 1 = 1)....! (12)

vhere 1.1 is the eigenvalue associated with the eigemvector Y-i’

are conjugate—symmetric (Hermitian), the eigenvectors form an orthonormal set. Assume
that the sensor outputs contain omne signal and noise uncorrelated with the signal
(X = §#N). The result of computing R accordiang to equation (5) for sufficiently large Kk
is

As correlation matrices

PP PO R TP I
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2 2aar
R = an0+ cs,s_s. (13)

Q is the noise correlation matrix normalized to have a trace equal to the dimension M of
the matrix R, § is the directiom vector of a plane~wave source and has a squared-norm
equal to M. The cross—terms involving signal and noise are assumed to be negligible. If
the noise correlation matrix equals the idenmtity matrix (i.e., only semsor noise is
assumed to be present), the eigenvector corresponding to the largest eigenvalue (hereby
refoerred to as the “largest eigenvector”) is equal to the vector § with eigenvalue equal

to ai-*lci. The remaining N—1 eigenvectors of R consist of those vectors orthogomal to §

and each has eigenvslue ci. If p incoheremt, linearly-independeant signals

5_1. i=1,...,p, are preseat so that the correlatiom matrix is of the form -

2 2 .
R = cnI + 121 c‘s,iiiﬁi' (14)

the p largest eigenvectors correspond to the signal terms and the M-p smallest are
orthogonal to all of the signal directiom vectors. Note that the largest eigeavectors are
not necessarily equal to the signal direction vectors in this case; these eigenvectors
comprise sn orthonmormal basis for the vector space containing the signal vectors.
Consequently, one cannot always inspect the largest eigenvectors and determine the signal
vectors directly.

Define cEV to be the sum of the outer products of the M=-p smallest eigenvecto:s.

cEv = z!ili' (15)
As the p largest eigemvectors are orthogonal to each of the M-p smallest, c‘EVli. = 9,

i = M-p+l,...,M. As the p largest eigenvectors span the space containing the signal
vectors, each signal lies in the null space of CEV and Cwii = 0, In this manner,

perfect resolution of the bearing of multiple sources cam be obtained from an eigenvector
analysis of the correlation matrix R.

Note that in computing the beam energy (equation 11), the matriz cEV need never be

computed. The correlation matrix R can be expressed in terms of its eigenvectors as

R = Sxxx' (16)
A o

and the inverse of R as

[ J
By convention, the smallest eigenvector is denmotsd by the subscript 1, the next smal-
lest by 2, ete.
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. an

Because of the orthogomality property of the eigeavectors of a correlation matrix, the

quantity cév'flcgv appearing in equation (11) becomes

- P
ey - ) L 18

i=l i

It is this matrix which is computed in the evaluation of the quadratic form of equation
(11).

-1

- - <P
) = g™ - ¥ S ] )
i=l i

The following segmence of computations comstitute the sigenvector method.

1. Compute the correlation matrix R.
2. Decomposes the matrix R into its eigenvectors and eigeavalues. :
3. Determine the number p of sources present in the acoustic field.

4. Compute the ..ergy in the beams corresponding to all possible bearings (equation
19).

5. The major peaks in this spectrum correspond to acoustic sources.

The methods of Owsley(12], Bienvenu(2, 3], and Schmidt{13] are similar, but differ

somewhat from the eigenvector method just described. The expression for R.l is truncated
as in equation (5); however, the small eigenvalues are set to the same value (taken here
to be umity). Instead of evaluating the quadratic form of equation (11), the spectral
estimate of the MUSIC method can be expressed by

-1
11'1112] (20)

.U -1 P
Spse® = (TG = Y;

This estimate can also be evalnated in the same manner as equation (11) if the matrix C is
redefined to be

?
Qusic 3 Vi LY

i=1

A steering vector can be defined (equation 6) when the latf'r approach is used to express
the MUSIC spectral estimate. Under the conditions just described, this spectral sstimate
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also has the capability of resolving sounrce bearing perfectly.

The presumption of the preceding analysis has been that the noise correlation matrix
Q@ is equal to the identity matrix. It is this key assumption which leads to perfect
bearing resolution. Imperfection in bearing resolution occurs whean this presumption is
faslse. The noise field may contain more than just sensor noise: for example, isotropic
noise may also be presenmt. In addition, a fiaite amount of averaging is used to compute
the correlation matrix R, Even if the noise field were spatially white, an empirical
noise correslation matrix would not be an identity matrix. Either of these situations can
reduce the resolution of the eigenvector and MUSIC methods.

The performances of the eigenvector method and of the MUSIC method under these more
realistic conditions are analyzed mathematically in the appeandix. From this analysis, an
approximate lower limit om the energy in the beam when steered on—-target using the
eigenvector method is found to be

2
g
S(x) = ———f—o

ot 2 (21)
S M

2 M K

US

A similar result is obtained for the MUSIC method. The quantity ¥y is & measure of the
spread of the eigenvalues e, of Q. For the eigenvector method, this guantity is givea by

2 1 S _1 2.2
Yoy = ¥ ) (& - % Y a2 (22)
i=} m
snd for the MUSIC method by
2 - 1 3 _ 1 2,2
Hsie = % 0 %% T X2 (23)
i=1 m
2 tends to be smaller th 2 In eith the ti i implicit
TyusIC s . ° a3 Ypye ither case, quantity y is an implici

function of the time—bandwidth product K. Generally speaking, y will decrease with
increasing K, teanding toward the spread of the eigenvalues of the spatial correlation
matrix of the underlying noise process. If the theoretical noise correlation matrix
equals the ideatity matrix (i.e., spatially white noise), the spread of its eigemvalues is
zero. Otherwise, the spread is nonzero.

The first term in the demominator of equation (21) determines how large the energy
poeak will be if an infinite time—bandwidth product were available. The second term
describes how the size of the energy peak depends on K. The larger of these will dominate
the expression in equation (21). When steered off-target, the energy in the beam produced
by the eigeavector method coincides with that produced with the minimum emergy approach.
The ratio (/ of the on—target to off-target beam energy canm be used to assess the size of
the pesk in the bdeam energy ss the directiom vector ¥ is scanned through all possible
beazings. When only sensor noiss is present, this quantity is given in the mizimum energy
method bdy(10]
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U“E = 1+ 2 . (24)
a

(25)

i
W

From simulatica studies, this quantity can be somewhat larger (a2 few dB) im the MUSIC
method than in the eigemvector method. Comparing equations (24) and (25), one concludes
tnat when the eigenvector method is used, the array appears to comnsist of a number of

elements XN given by

|

cz 2
Sa2xr , 1 (26)
ERI

In most instances, this quantity is larger than the actual number of semsors M.

I¥.B. Simulation Results

Computer simulations were used to evalnate the eigemnvector and MUSIC methods and to
compare them with the minimum emergy method. In these studies, sequences of the data
vector 31 =8 + Hi woere produced. The parameters of the signal vector § were defined as

described in section II. The noise vector ui consisted of identically—distributed complex

Gaussian noise componments. The covariance matrixz of this random vector coald be specified
by the user. Each noise vector was gemerated to be statistically independent of all other
noise vectors. The empirical correlation matrix R was then computed as in equation (5)
and its eigenvectors and eigenvalues computed according to a QL algorithm(8].

Vith onme exception, each step of the procedure outlined above for the eigenvector
method was followed. As the number p of sources preseat in the acoustic field was kanown
by the user, it was supplied by him. In a physical situation, this parameter would not be
s0 readily known. However, the purpose of the simulations was to determine the validity
of the theory and to test how well the methods could perform. The effects of inaccurate
choices for p are described in a later section.

A comparison of the beam emergies produced by the minimum energy method and by the
eigenvector method is shown in figure la when one source is present in the acoustic field.
A similar comparison is found ian figure 1b for the MUSIC method. Note that the height of
the main pesk relative to the background noise level varies with K, the time—-bandwidth
product, ia both methods wheress it does not in the minimum energy method. In this
example, sensor noise (i.e., spstially white) is present. For the array length used, the
second term in denominator of equation (21) was larger than the first. Simulated aad

-8
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theoretical values of l/Ev are compared in Table I. The theoretical predictiom of the
value of this quantity is close to that obtained from the simulatioms.

The spectra obtained from the eigenvector method and the MUSIC method differ only
slightly in these examples. The latter method terds to prodace much flatter off-target
spectrs., The small eigenvalues of the corrslation matrix R tend to represent the noise
field (see the discussion following equation 13) and the equalization of these values will
“whi ten” the background noise, thereby resulting in a flat spectrum. This effect is
further illustrated by comnsidering a case where isotropic noise is present in the acoustic
field (figure 2).

1V¥.C. Resolutjon of Multiple Iazxgets

Cox{6] derives analytic expressions for the limits to which the minimum energy method
applied to a linear array can resolve two equi~stremgth, incoherent acoustic sources.
There, "resolution” is defined as the minimum bearing separation at broadside at which two
targets can be distinguished by evaluating beam energy. Here, s slight dip in the beam
energy is required whenm the array is steered between the sources. The critical factors
determining the resolution of beams formed by the minimum energy approach are aperture

(detined as the spatial extemt of the array relative to a wavelength - %). the number of

elements in the array (M), and the sensor signal-to—noise ratio (ai/a:). Cox's results

are summarized in figure 5 of his paper(6]; am approximation to those results is

xaz

— o [o ¢ (27

g
o

where @ is bearing sepasration of the two targets.

When the eigenvector method is applied in situations such as these, targets are more
easily resolved and furthermore, the resolution capabilities of the array are increased.
Figures 3 and 4 display typical examples of these cases. A theoretical predictiom of the
degres to which resoluntiomn is increased cam be obtained from equation (27). If one

substitntes X evaluated by equation (26) for M, the value of O thus obtained is the
gesolution limit of the eigenvector method and the MUSIC method. A comparison of the
resolution obtained from some of the simulations with that predicted by the theory is
shown in Table II. The degree of agresment between theory and simulation results implied
by Tsble II is valid for sll of the simulations.

I¥.D. Effect of an Impzover Choice for p

The theoretical and simulation results presented thus far are valid only when the
parameter p equals the actusl number of acoustic sources. In practice, this quantity may
not be known and one questions the sensitivity of the eigemvector snd MUSIC methods to an
incorrect choice of p. This sensitivity was studied through the simulations; ao amalytic
results were obtained on this issue.

An incorzect choice for p has different effects on the eigenvector aand MUSIC methods.
Ia both methods, choosiang p too small does pot result in a beamformer having superior
bearing resolution properties to the minimum energy method. In the eigenvector method,
the spectra tend to resemble those obtained with the minimum energy method. Ia

particular, by sssuming no sources are present (setting p = 0 or the matrix cEV = I), the
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eigenvector method is exactly the minimum emergy method. Ia contrast, the MUSIC method
tends to produce a number of spectral peaks equal to p. For example, if a value of zero
is chosen for p, a uniformly flat spectrum results. The peaks that result from monzero
choices tend to correspond to the bearings of acoustic sources; however, which sources are
thus located is not easily predicted. When p is chosen too large, the bearing resolving
caspabilities of either method are not greatly reduced. The spectra produced by the
eigenvector method tend not to vary from that obtained with the proper vslue of p. The
MUSIC method tends to produce spurious pesks that do not correspond to physical sources.
The effects are illustrated in figure S§.

Y. Resolution and Arxay Gain

While these approaches increase the resolution of bearing, this increase in
resolution is sccompanied by & decrease in the srray gain. To show this, assume the
correlation matrix R is of the form givean in equation (13). The signal-to—noise ratio at

each sensor is therefore ci/ci. The signal-~to—noise ratio iana the beam output is the

quantity

jASS'A
? (28)

ciA'M

The axray gain G is the ratio of these signal-to—noise ratios.

A' 'A .
G = -i%— (29) i
A'QA s
Recalling that the steering vector in this case is given by
-1
R
A = a (30)
verto
and setting the direction vector to correspond to the source (¥ = §), the array gain
becomes
- - :
goristes
G = 1 1 . (31)
S'C'R "Qr "C3 2

i> As the matzix Q is given by

a = -J;(x-cfs_a').

P Qg
2

(32)

i . the denominator of equation (31) bdecomes

- 10 -

g—&-_‘—“-_—
s ittt ..
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srentanlcy - d(grermeg - c§§'C'l_1§_-§_'l-10§) (33)
an
s0 that we obtain
2
[+ ]
G = " -
§ncvn-1‘s- 5 (34)
-1 1. %
§$'C'R "8:S'R°G

For the eigenvctor method,
¢« o1 -1 , a1
Er = R Gy s G Gy (35)
and the array gain becomes
g'E' n c §
o8 B Ogys.

In the MUSIC method, the ratio appearing in the denominator of equation (34) can be
" bounded using the Schwarz inequality.

}_ ___Eﬂﬂd_ﬁmué__ — a1
¥ st I s 3G

Equality occurs only when the M-1 smallest eigenvalues of R are identical (i.e., Q= I},
This bound can be used in equation (34) to obtain an upper bound on GMUSIC if the bound is

not smaller than oi. As the expression thus obtained equals GEV (equation 36), this

G

EV (36)

condition is satisfied. Consequently,

Syoszc < Sgv (38)

Considering equatiom (36), GEV is a monotomically imcreasing fuaction of the quadratic

form 5'%,1‘11“&. Therefore, whenever one decresses this quadratic form to improve the

indication of besring (equation 19), the array gain decreases in the eigenvector method.
Because of the relationship given in equation (38), the array gain obtained with the NUSIC
gethod also decresses. In the 1limit, perfect indication of besaring (s zero-valued
quadratic form) corresponds to zero array gain with either method.

S -t
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YI. Comclusions

The eigenvector method can enmhance the bearimg-resolving capabilities of an array.
Here, the eigemvectors and eigonvalues of the correlation matrix must be found and the
weighted sum of Fourier transforms of the eigenvectors computed. In the minimum energy
mothod, the inverse of the correlation matrix must be found and the quadratic form of
equation (8) computed. Roughly speaking, the computational complexities imvolved in the
use of the eigenvector method are not excessive when compared to those required in the
minimum energy method.

The degree to which the resolving power is increased is related to the quaatity N.
Because of oequation (27), this increase is proportiomal to (M/M)IM. Consequently, to
increase the bearing resolution by 2 factor of 2 requires the virtnal number of sensors X
to be 16 times the actual number. Referring to Table I, such large virtual array lengths
can be obtained only when large time-bandwidth products are possible. Under these
circumstances, onhanced bearing resolution is possible. For a givean time~bandwidth
product, the smaller the number of elements in the array, the greater the increase in
bearing resolution.

The eigeavector method and the MUSIC method produce quite similar results. They
differ in at least two respects, however., The first is that a non-zero value of p, the
aumber of assumed sources ian the acoustic field, must be chosen in the MUSIC method. If
the value of p is not close to the actual value, the spectra thus obtained can differ from
that obtained with the proper value: spurious peaks appear and/or peaks can be missed. In

- contrast, the esigenvector method is less sensitive to the choice of p. Second, the shape
of the spectrum of the background “noise” is drastically altered in the MUSIC method. For
example, the variations due to low-level sources or to the physical noise spectrum are
lost (see figure 2, for example). This portion of the spectrum can also vary as p is
changed; this effect is much less pronounced in the eigenvector method.

The increase in bearing resolotiom is obtained at the expense of array gaia.
Consequently, if more than bearing information is required, other techniques should
probably be used to obtain them. Omne can comceive of the eigenvector method being used to
acquire source bearing and this information being used to steer a beam with the minimum
energy method so as to analyze the waveform produced by the source. Note that this two-
step procedure need ouly be sequential in a conceptusl mannmer. Because of the close
; relationship between the two methods, obtaining the steering vector for the minimum energy
! beamformer means including more terms in the eigenvector decomposition of R.

} The decrease of array gain with increasing resolution raises many theoretical issues.
The =nminimum energy method is known to yield the optimal valuwe of array gain.
Consequently, any method which has greater resolution capabilities cannot also increase
array gaina., Can array gain bde maintained while increasing resolution or is increased i
resolution always obtsined at the expense of array gain? The present method has the
latter property. A theoretical anderstanding of the limits to which array gain aad
resolution can be traded against each other would be of interest.

The main issae not addressed in this study is the determination of the number of
sources ~ p. From the analysis presented in section IV, the number of sources corresponds
to the number of dominant eigenvalues in the matrix R. Determining p in this way can bde
difficult when small time-bandwidth products are available and isotropic noise is preseat.
Res socnably sccurate methods of determining p from the eigenvalues of R are not kpown at
this time.
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Aopendiz

Let the vector X of sensor outputs be of the form x-cs_& + cng where S denotes the

source direction vector as before and N demotes additive noise. The correlation matrix R
is computed empirically according to equatiom (5) to yield.

2 2
R = ch + cucsﬂ' + cncsﬁs’ + 0,5.5' . (A.1)

whezre Q@ = %sﬂiui. a statistical estimate of the noise correlation matrix and
i=1

N = %5 ui' sn estimate of the average noise compoment. The vectors ui sre assumed to
i=1
be statistically independent random vectors; each componeat of ﬂi has zero mean and uanity

varisnce. Consequently, the components of the vector N have zero mean and emergy 1/K.
Define the matrix P to be the noise—related terms in esquation (A.l).
g ]
P - a+ iR o+ Ay (A.2)
a a
Consequently, the expression for R in equation (A.1) can be writtenm more simply as

2 2 e
R cnP + as§§ (A.3)

The estimate of the energy in the beam pointed in the ¥ direction is given by equationmn
(11). Following Cox[6], this expression can be written as

2 S
S (k) i [ AT ]
= -1 3 2 -1 I (A.4)
verla [1+(N)m.1a (L 8 P hj

2,2

where (‘g)"Ax = s_'r"lg (c'/cn) is the signal-to~noise ratio of the beam output obtained

with the optimally—chosen steering vector aad sinz(C!. S P.l) is the sine—squared of the
angle between the vectors CY and § with respect to the matrix P.l. The matrix CEV is

given by equation (15) when p, the number of signals in the scoustic field, is assumed to
be one. The critical sspect of equation (A.4) is the quantity cw[ This quantity caa be

viewed as the projection of the vector ¥§ onto the set of eigenvectors orthogomal to the
largest eigenvector of R. As indicated earlier, these eigenvectors are approximately
orthogonsl to the signal vector. To a good approximatiom, the vector Cwl is orthogonal
to §, thereby implying for all ¥ that sinz(cw!, s; P-l)

thexefore becomes

- 1, Expression (A.4)

ek ikamas e e vadii i




R e

B

s et oy e

e e i e

P R S

Johnson De@raaf Improving Bearing Resolution

2
c

$(x) = ——R—, ' (A.5)
Vov? Ot

When ¥ does not correspond to the signal directiom vector §, the matrix CEV has little

effect on the vector ¥. In this case, one obtains

2
a

s(x) = —B—,
yYr'xY

the result obtained with the minimum energy estimate. Consequently, one should expect the
sigeavector procedure and the minimum energy procedure to yield the same numerical values
wvhen steered off-target. As the beam is steered toward the source, the two estimates will
begin to differ as the matrix cEV begins to sffect the vector W.

Ia the succeeding analysis the inverse of the matrix P is assumed to be approximately
equal to the inverse of Q in the computation of the quadratic form appearing in equation
(A.5). Iaspecting equation (A.2), this approximation will be less sccurate as the
signal-to-noise ratio (d:/cn) increases and as the amount of averaging (K) decreases. The

energy estimate can be written approximately as

2
L

S(x) =z —A—. . (A.6)
TGy Ol

The quadratic form in equation (A.6) can be interpreted as the squared-length of the
vector CEVI with respect to the norm induced by the matrix in. We therefore seek an
expression for this quantity when ¥=§.

Assume that !H' the largest eigenvector of R, is given by ll = S+3 where g is a

vector orthogonal to §. Consider the vector diagram shown in figure Al. The vector 3 is
defined to be orthogonal to the eigemvector §+g. What'is sought in equation (A.6) is the
square of the length L of the vector § projected onto 3. As shown below, the length of ¢
is small compared to §; therefore, the quantity L will be approximately equal to the
length of g§. To a good spproximation, the emergy in the beam steered om—target is given
by

2
o

S(k) = ——i—

et
Q

(A.T)

wheze ||;||2_1 denotes the squared-norm of g with respect to al.
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et | = grals.
Q

The definition of an eigenvector implies that this vector must satisfy

R(S+g) = A, (S+g). (A.8)

As the vectors § asnd ¢ are assumed to be orthogonal, the eigenvalune A‘M can be found
through the relationship

SRS = AS (B0 = 0y

Using equation (A.3) for R, we have

¢ 'S$'QS
)l = —%—- + 0,0,‘(5'5“'!'5:"!'1) + uci. (A.9)

An expression for the vector g is obtained by evaluating the quantity l(§+§,)-kx§. After

some manipulation and assuming that the length of g is small compared to the lemgth of §,
we have

2,.-1,2 28’
£ = (I (anq-onsfi + Moo 8 -ao §'EY (A.10)

This expression for the vector ¢ comsists of a matrix (Lul—ciﬂ)-l times the sum of
tvo terms. The first term, demoted by 31. is comprised oanly of the signal-related terms
and the matrix Q.

2 2 8
B, = o -d S8 (A.11)

The second term contsins the terms depending on the average noise vector N.

3,2 - uc’anﬁ- c‘cn(i'mi. (A.12)

It one assumes the noise vector Y to be zero (implying infinite statistical averaging),
the vector g is given by the quantity g = (kuI-ciQ)_IBI. Note that if Q = I, the
quantity B’l = 0 which implies ¢ = Q. Therefore, the signal vector § correspoands to

-the largest eigenmvector of R; this result is consisteat with the analysis described while
leading to equmation (5). The tera 32 expresses the effect om the eigeamvector of the
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statistical averaging process. Note that if noise field can be described as containing
only sensor noise (@ = I), the expressiom for g is dominated by B,z. The vector 31 can

be interpreted as the noise vector which results when all of its compoments in the
direction of the signsl vector § are eliminated (equetion A.12). The squared-magnitude of

this vector therefore depends on the "angle” between the vectors N and §. This angle will
be a random quantity when the computation of R is completed. This vector will be largest

when N and § are assumed to be orthogomal. Ia this case, §'N = O, an the expression for
32 becomes

B, = Moo 8. (A.13)

Define !1 (32) to be the product of (lll-ciﬂ)-l and 31 (B,z). The vector g is thersfore

written as

s = B +§ (A.14)

An expression for the norm of g can now be obtained. Let !i denote an eigenvector of

the matrix Q and a, the associated eigenvalue. As these eigenvectors asre orthomormal, aay

i
vector can bs expressed as a linear combination of them. As ni is also an eigeamvector of

(Lul-ciﬂ)-l. El snd 3,2 can be written as

L2 5 )
g = o) > I, (A.150)
1 ~a.0
b - §
us
L - Ic’cn} = 0, (A.15b)
: )Y-ﬂicn

The quantity l‘-cia: csn be simplified. Using equation (A.9) and assuming both g and §

are small compared to §, we have

A.u-aici - lc +(u-¢)¢.

The quantities within the parentheses are comparable and further assuming !ci ? c:. we
have
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).u-u.az ~ Hﬂz. (A.16)
ia =~ s

The norm of g depends upon the angle between these two vectors. Based om statistical

arguments, & zero—mean vector obtained from averaging (B,z in this case) will be nearly

orthogonal to any fixed vector. Consequently,

"1"2-1 - gl u;2n2 (A.17)

Now

LS 15p 132
2 M Ea'|§, nnl ) 2
g, = o ) 778y, |

1 a.(l-cia)

B>

To evaluate this expression, the relationship between the signal direction vector S and

the eigeavectors of Q must be specified. If S were proportional to am eigemvector of Q,

* the quantity ||B,1||2_1 would be zero. As the norm of B, will appear in the demomimator of
Q

the expression for beam energy (equation A.7), ome can obtain a lower bound on the emergy

" in the beam by assuming the largest—-possible valne for its leangth., To approximate the 1

maximal length of B ., sssume that § does not prefer agy of the eigenvector directioms of
1

Q. A reasonable mathematical description of this situmatiom is that [§'U 12 = q.., In this
i i

instance, we have using equation (A.16) that

g, W2, =
Q

..“. L“a.

(a, - & Yab. (A.18)
1 x m

The quaatity in the summation depends only on the eigenvalues of the matrix Q. Define the
quantity 1; to be

2 _ 1 _1% 2,2
Ty M 2 (a; ~ y 2 a) - (A.19)
Then, equation (A.18) becomes

Ilnlllz_1 - . (A.20)
Q

Y N
1=
:h o

-8 -
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As the term B,z is a random quantity, its squared-morm is defined to be

raz IN'D |2]
ng. 12 . = gl8§ —— (A.21)
Bler T R4

where E(-] denotes expected valme. To a good approximation, !i. is an eigeavector of the

correlation matrix associated with the random vector N. Consequently.

2 Q.
E[IR'g 11 = —

K
s0 that
cz
2 - 2M
g, 1°_, 2L (A.22)
Q o,

. Substituting equations (A.18), (A.22), and (A.17) into equation (A.7), we have finally

}m

Spy(k) = 2

m . M (A.23)
M K

o Lqu

as an expression for the energy in the beam when steered toward the source.

The anslysis for the MUSIC method differs only in detail from that just described.
In this method, the spectral estimate is given by

¥ W4 -1
Sywsrc'y) = (X' CryCppd) (A.24)

Off target, CEV‘! spproximately equals ¥, implying that Smsxc(k) = H-l. When steered on

target, the expression for the MUSIC estimate differs little from that givenm in equation
(A.7). The significant difference is that the norm of g is computed with respect to the

identity matrix instesd of Q-l. The quantity of ianterest is therefore

2 2 2
elZ = nig % + g, 2.

The norm of '2 with respect to I equals that computed with respect to 0.1; the expression

-19 -
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for the norm of 11 is

P
e S el Ml ], s i Bl Bt o

2,2 :
aL/a
Syps1c®) = 22 (A.25)
Zn "wusic ¥ )
2 M X !
-4
]
where 1:031‘: is defined to be
2 Y 3 _1% 2.2 4
Twsie T oM 4 %% T Z )
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Table I. Empirical and Theoretical Peak—-to—-Background Ratios -

The results of computer simulations and theoretical predictions of the value of (/ are
shown. In the simulations, an equally-spaced linear array containing 10 sensors was
assumed to be present in an scoustic field conmtaining sensor noise and a plane-wave
source. The sensor signal-to-noise ratio was 0 dB. Values of y were compuated in separate
simulations from noise—omly correlation matrices having the same time—bandwidth product.
The source was assmmed to be narrowband, with all of its source energy comcentrated in one

temporal-frequency analysis bin., The sensor spacing is one-half wavelength. Plot of beam
A

energy vs. bearing were obtained and empirical valmes of (/ estimated. The quantities UHE

A
and (/Ev correspond to these empirical values.

~ ~

K H ‘/ME (dB) (/Ev (dB) UEV (dB)

20 18 10 13 13

50 46 11 18 17
100 90 12 22 20
200 183 11 27 23
500 461 11 29 27
1000 940 11 - 32 30
2000 1734 11 34 33
5000 4597 11 39 37

SN
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le II. Empirical and Theorstical Resolution Limits

results of computer simulations and theoretical predictions of resolution limits are
marized. The array configuration used iz Table I was used here. The sources were
metrically located about broadside (0 degrees). Plots of beam energy vs. bearing were
ained and the separatiom between the sources reduced until they could just be resolved.
) measurements of separation were made in half-degree increments. The angular
atities O are indicated in degrees.

”

4 % %x Oy |

20 8 7.5 1.5 i

50 8 6 5.8 %
100 3 6 5.4

200 8 4.5 4.6 i
500 8 3.5 3.7 ,
1000 8 3.5 3.0 1
2000 8 3 2.6
5000 8 2.5 2.1
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Figuge Captions

Eizuze 1. Energy in beams formed by the minimum energy method (ME) and by the eigenmvector
method (EV) are plotted against bearing for a linear array. Energy is expressed in dB
relative to the peak value. Bearing is expressed in degrees with zero corresponding to
broadside. The sensors are equally spaced and separated by half a wavelength, The source
was assumsd to be nsrrowbaad, with all of its source emergy concentrated in ome temporal-
frequency snslysis bin. In each sub-figure, sensor noise and ome source located at 0 are
presemt in the sound field; the semsor signsl-to—noise ratio is 0 dB. The results
obtained when two time~bandwidth products (K) are used are shown in each sub—figure for
each method.

Figuge 2. Beam onergy is plotted against bearing when one source (located at 0°) and
isotropic noise are present in the sound field. The array configuration is similar to
that described in figure 1, the omly exceptiom being that the sensor spacing is three-
eighths of a wavelength. The sensor signal-to—noise ratio is 0 dB. The results of
applying the minimum energy (ME), eigenvector (EV), and MUSIC methods are shown. The
time—bandwidth product here is 50; the theoretical values of (/ corresponding to this

situation are UEV = 15.7 dB and UMIJSIC = 16.4 dB.

Figugze 3. Beam emergy is plotted against bearing when two sources are present in the
acoustic field. The comventions dofined in Figure 1 apply to this plot. Here, the sensor
si:aal-to-noise ratio of esch source is 0 dB and the the sources are located at -50 and

+SB,

Figuze 4. Beam energy is plotted against bearing when two sources are present in the
acoustic field. The conventions defined in Figure 1 apply to this plot. Here, the sensor
sisul-to—noiu ratio of each source is 0 dB and the the sources are located st -3° and
+3°,

Figure 5. Beam energy is plotted against bearing with the number p of terms truncated

from the eignevector expansion of Rl 8S a Dparameter, The parametric beam eunergy
functions in each panel is plotted with the same vertical scaling. A linear array of ten
equally—-spaced sensors (spscing equsl to threse~eights of a wavelength) is preseat in an
acoustic field. Three incoherent sources are present in the acoustic field: two have
unity ssplitude and are 300::04 at bearings +5° and -So while the third has amplitude of
one—~half and bearing -40 . Isotropic noise is also preseamt in the acoustic field; the
sonsor signal-to—noise ratio (relative to the larger signals) is 0 dB. The time-bandwidth
product in both panels is 50. The upper panel displays the result of applying the
eigenvector method and the bottom pasel illustrates the result of applying the MUSIC
method for the same set of data., Note that the proper value of p for thess data is p=3,

Eisgnze Al. Relationship of the Signal Vector and the Largest Eigeavector

[
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